1,3-Propanediammonium Tetrachlorozincate(II)

By A. Kallel* and J. Fail
Chemical Cry'stallography Laboratory', 9 Parks Road, Oxford, OX 1 3PD, England
H. Fuess
Institut für Kristallographie und Mineralogie der Universität Frankfurt, Senckenberg-Anlage 30, 6000 Frankfurt am Main 1, Federal Republic of Germany
and A. DaOud
Laboratoire de Chimie Minérale, Faculté des Sciences et Techniques de Sfax, Tunisia

(Received 3 June 1980; accepted 21 July 1980)

Abstract

NH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{3}\right]\left[\mathrm{ZnCl}_{4} \mid\right.\), monoclinic, $P 2_{1} / n, a=10.692$ (5), $b=10.611$ (5), $c=10.786$ (2) $\AA, \beta=118.47(6)^{\circ}, V=1075.8 \AA^{3}$ at $296 \mathrm{~K}, Z=4$, $D_{c}=1.73, D_{m}=1.72$ (1) $\mathrm{Mg} \mathrm{m}^{-3}$ (by flotation), graphite-monochromated Mo Ka radiation, $\mu=3 \cdot 2$ $\mathrm{mm}^{-1} ; 1632$ independent diffractometer data up to $\sin \theta / \lambda=0.69 \AA^{-1}$; final $R(F)=0.039$. The structure consists of ZnCl_{4} tetrahedra linked via hydrogen bonds by 1,3-propanediammonium groups.

Introduction. The title compound was synthesized by the reaction of 1,3 -propanediammonium chloride and ZnCl_{2} in equimolar quantities in water. Some drops of hydrochloric acid were added to the solution to give $\mathrm{pH}=1$. Prismatic crystals were obtained by evaporation.

A crystal $0.55 \times 0.25 \times 0.25 \mathrm{~mm}$ was selected for the experiments. Precession photographs indicated monoclinic symmetry and systematic absences gave $P 2, / n$ uniquely.

Data were collected on a PDP8-controlled EnrafNonius CAD-4 diffractometer. Mo Ka radiation from a graphite monochromator was used. The orientation matrix and cell dimensions were obtained by leastsquares refinement from the setting angles of 25 reflexions. Intensities were collected in one hemisphere $(\pm h, k, \pm l)$ of reciprocal space up to $\sin \theta / \lambda=0.69 \AA^{-1}$ with an $\omega-2 \theta$ scan, and variable scan rate and scan angle according to $\Delta \theta=(1 \cdot 1+0.35 \operatorname{tg} \theta)^{\circ}$. Intensity control was carried out on three intense reflexions every 1.5 h of X-ray exposure time and the orientation matrix was checked every 200 reflexions. 5354 reflexions were measured, of which 1632 with $I>3 \sigma(I)$ remained after merging equivalent reflexions. $\sigma(I)$ is the e.s.d. from counting statistics.

[^0]The positions of the Zn atoms were obtained by Patterson methods. Subsequent Fourier syntheses revealed the non-hydrogen atoms. They were refined with individual anisotropic thermal parameters and anomalous-dispersion factors for Zn by full-matrix least-squares calculations. At this stage all features of the crystal structure were determined and refined to $R(F)=0.044$ and $R_{w}(F)=0.053$. A difference synthesis yielded the positions of the H atoms. They were included in the refinement but with their distances to the C and N atoms constrained (Waser, 1963; Rollett, 1969) at $1.05 \AA$. We also constrained the

Table 1. Positional parameters and equivalent isotropic thermal parameters

	x	y	z	$\begin{gathered} B_{\text {eq }} \\ \left(\AA^{2}\right) \end{gathered}$
Zn	0.25546 (7)	0.13619 (6)	0.00496 (8)	2.48
$\mathrm{Cl}(1)$	$0 \cdot 1509$ (2)	$0 \cdot 3100$ (1)	0.0381 (2)	2.64
$\mathrm{Cl}(2)$	0.3790 (2)	0.0436 (1)	$0 \cdot 2160$ (2)	3.04
$\mathrm{Cl}(3)$	0.0869 (2)	0.0017 (2)	-0.1477 (2)	$3 \cdot 21$
$\mathrm{Cl}(4)$	0.3962 (2)	$0 \cdot 2033$ (2)	$\cdots 0.0862$ (2)	3.90
$\mathrm{N}(1)$	0.6716 (5)	-0.2988 (5)	$0 \cdot 6218$ (5)	2.27
$\mathrm{N}(2)$	0.7193 (6)	$0 \cdot 0222$ (5)	0.3196 (6)	2.99
C(1)	0.7753 (7)	-0.2202 (6)	0.5993 (7)	3.17
C(2)	$0 \cdot 6955$ (6)	-0.1431 (6)	$0 \cdot 4663$ (6)	2.82
C(3)	$0 \cdot 8005$ (7)	0.0618 (6)	0.4426 (7)	3.34
$\mathrm{HI}(\mathrm{NI})$	0.720 (2)	-0.340 (4)	0.720 (3)	
H2(NI)	0.629 (4)	-0.368 (3)	0.548 (4)	
H3(N1)	0.588 (3)	-0.244 (2)	0.615 (3)	
H1(N2)	0.646 (4)	0.076 (4)	0.334 (3)	
H2(N2)	0.785 (2)	0.082 (3)	$0 \cdot 306$ (3)	
H3(N2)	0.665 (4)	-0.029 (2)	$0 \cdot 229$ (3)	
H1(Cl)	0.831 (2)	-0.162 (2)	0.685 (3)	
H2(C1)	0.849 (2)	-0.277 (2)	$0 \cdot 592$ (2)	
H1(C2)	0.639 (2)	-0.202 (2)	0.381 (3)	
H2(C2)	0.620 (3)	-0.087 (2)	0.473 (2)	
H1(C3)	0.864 (2)	-0.008 (2)	0.534 (3)	
H2(C3)	0.870 (3)	-0.118 (2)	0.425 (2)	

(C) 1980 International Union of Crystallography

Table 2. Bond lengths ((\AA) and angles $\left({ }^{\circ}\right)$

	Uncorrected for libration	Corrected for libration
$\mathrm{Zn}-\mathrm{Cl}(1)$	$2.272(2)$	$2.277(2)$
$\mathrm{Zn}-\mathrm{Cl}(2)$	$2.241(2)$	$2.248(2)$
$\mathrm{Zn}-\mathrm{Cl}(3)$	$2.272(2)$	$2.278(2)$
$\mathrm{Zn}-\mathrm{Cl}(4)$	$2.268(2)$	$2.275(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.513(8)$	
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.496(7)$	
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.531(8)$	
$\mathrm{C}(3)-\mathrm{N}(2)$	$1.486(8)$	
$\mathrm{Zn}-\mathrm{Cl}(2)$	$106.95(6)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{Zn}-\mathrm{Cl}(3)$	$110 \cdot 12(6)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{Zn}-\mathrm{Cl}(4)$	$106.96(6)$	$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(2)$
$\mathrm{Zn}-\mathrm{Cl}(3)$	$109.88(6)$	
$\mathrm{Zn}-\mathrm{Cl}(4)$	$112.73(7)$	
$\mathrm{Zn}-\mathrm{Cl}(4)$	$110.11(7)$	

angles $\mathrm{H}_{i} \mathrm{NH}_{j}$ or $\mathrm{H}_{k} \mathrm{CH}_{i}$ of the 1,3-propanediammonium group to their mean value. The final $R(F)$ $=0.039$ and $R_{w}(F)=0.045$. Scattering factors were from Cromer \& Mann (1967), except for H (International Tables for X-ray Crystallography, 1974).

All calculations were carried out with the Oxford CRYSTALS (Carruthers, 1975) package on the University ICL 1906A computer. The atomic parameters are reported in Table 1, bond lengths and angles in Table 2.*

Discussion. The present structure is part of a study of compounds of general formula $\left|R_{x} \mathrm{NH}_{4-x}\right|_{2}\left|M X_{4}\right|$ where $M=\mathrm{Mn}, \mathrm{Cd}, \mathrm{Co}, \mathrm{Zn}, \mathrm{Hg}$, and $X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ (Daoud, 1976, 1977; Morosin, 1972); R is an aliphatic or aromatic residue. Several of these compounds have been shown to contain one-dimensional structures with short metal-metal contacts which may give them interesting conducting properties (Morosin, 1972;

[^1]

Fig. 1. Stereoscopic view indicating the hydrogen-bond system.

Table 3. Hydrogen bonds

$\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$	$\mathrm{N} \ldots \mathrm{Cl}$ (A)		$\mathrm{H} \cdots \mathrm{Cl}$ (A)	$\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ $\left(^{\circ}\right)$
$\mathrm{N}(1) \mathrm{H} 3(\mathrm{~N} 1) \cdots \mathrm{Cl}(1)^{a}$	$3 \cdot 244$ (5)		$2 \cdot 36$ (3)	142 (3)
$\mathrm{N}(1)-\mathrm{HI}(\mathrm{N} 1) \cdots \mathrm{Cl}(1)^{b}$	$3 \cdot 229$ (5)		$2 \cdot 32$ (3)	146 (3)
$\mathrm{N}(1)-\mathrm{H} 3(\mathrm{~N} 1) \cdots \mathrm{Cl}(2)^{\text {b }}$	3.404 (5)		2.71 (4)	124 (3)
$\mathrm{N}(1) \cdots \mathrm{HI}(\mathrm{N} 1) \cdots \mathrm{Cl}(2)^{d}$	$3 \cdot 247$ (5)		2.76 (4)	110 (3)
$\mathrm{N}(1)-\mathrm{H} 2(\mathrm{~N} 1) \ldots \mathrm{Cl}(3)^{d}$	$3 \cdot 375$ (5)		2.40 (3)	160 (1)
$\mathrm{N}(2)-\mathrm{Hl}(\mathrm{N} 2) \cdots \mathrm{Cl}(1)^{\text {c }}$	$3 \cdot 303$ (5)		2.50 (3)	134 (2)
$\mathrm{N}(2)-\mathrm{Hl}(\mathrm{N} 2) \cdots \mathrm{Cl}(2)^{e}$	$3 \cdot 265$ (5)		2.53 (4)	127 (3)
$\mathrm{N}(2) \cdot \mathrm{H} 2(\mathrm{~N} 2) \cdots \mathrm{Cl}(3)^{\prime}$	$3 \cdot 386$ (5)		2.80 (4)	118 (3)
$\mathrm{N}(2)-\mathrm{H} 3(\mathrm{~N} 2) \cdots \mathrm{Cl}(4)^{\prime}$	$3 \cdot 259$ (5)		$2 \cdot 30$ (3)	157 (2)
$\mathrm{N}(2) \mathrm{H} 2(\mathrm{~N} 2) \cdots \mathrm{Cl}(4)^{\text {c }}$	$3 \cdot 356$ (5)		$2 \cdot 58$ (4)	134 (3)
Symmetry code				
(a) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$		(d)	$-\frac{1}{2}+x$,	$y,-\frac{1}{2}+z$
(b) $1-x,-y, 1-z$		(e)	x, y, z	
(c) $-\frac{1}{2}+x, \frac{1}{2} \quad$ i. $-\frac{1}{2}+z$		(f)	$1-x$,	

Walter, Brinkmann, Chapuis \& Arendt, 1978). To investigate whether the Zn chloride complex can form a linear-chain conductor we determined the structure of the title compound. A stereoscopic view of the structure is shown in Fig. 1.

The structure contains isolated ZnCl_{4} tetrahedra. The tetrahedra are interconnected via hydrogen bonds to the 1,3-propanediammonium groups. There are ten possible hydrogen bonds from ammonium to Cl atoms (Table 3). $\mathrm{H} 3(\mathrm{~N} 2)$ and $\mathrm{H} 2(\mathrm{~N} 1)$ are involved in one hydrogen bond each with angles of about 160° while the other ammonium H atoms are involved in bifurcated hydrogen bonds with considerably smaller $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ angles. Consideration of $\mathrm{H} \cdots \mathrm{Cl}$ distances enables the hydrogen bonds to be classified as medium to very weak.

The ZnCl_{4} tetrahedra show angles from 106.95 to 112.73°, indicating a small distortion from tetrahedral symmetry probably resulting from hydrogen bonds. The average $\mathrm{Zn}-\mathrm{Cl}$ distance corrected for thermal motion is $2.27 \AA$, which agrees well with the $2.28 \AA$ in $\left\lfloor\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right|_{2} \mid \mathrm{ZnCl}_{4}\right\rfloor$ (Wiesner, Srivastava, Kennard, Divaira \& Lingafelter, 1967) and in $\left[n-\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NH}_{3}\right]_{2}$ $\left\lfloor\mathrm{ZnCl}_{4}\right\rfloor$ (Ciajolo, Corradini \& Pavone, 1976). The $\mathrm{Zn}-\mathrm{Cl}(2)$ bond is 2.241 (2) \AA. This would appear to be significantly different, but there is no obvious cause.

Thanks are due to Drs A. K. Cheetham and K. Prout for permission to use the facilities in their laboratory and to Dr J. W. Bats for helpful discussions. One of the authors (AK) thanks the British Council and the Faculte des Sciences de Tunis for financial support.

References

Carruthers, J. R. (1975). CRYSTALS Users' Manual. Oxford Univ. Computing Laboratory.

Ciajolo, H. R., Corradini, P. \& Pavone, V. (1976). Acta Cryst. B 33, 553-555.
Cromer, D. T. \& Mann, J. B. (1967). Report LA 3816. Los Alamos Scientific Laboratory.
Daoud. A. (1976). Thesis, Univ. of Dijon.
Daoud, A. (1977). J. Appl. Cry'st. 10, 133.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Morosin, B. (1972). Acta Cryst. B28, 2303-2305.

Rollett, J. S. (1969). Crystallographic Computing, edited by F. R. Ahmed, pp. 169-172. Copenhagen: Munksgaard.
Walter, U., Brinkmann, D., Chapuis, G. \& Arendt, H. (1978). Solid State Commun. 27, 901-905.

Waser, J. (1963). Acta Cryst. 16, 1091-1094.
Wiesner, J. R., Srivastava, R. C., Kennard, C. H. L., Divaira, M. \& Lingafelter, E. C. (1967). Acta Cryst. 23, 565-574.

Acta Crlst. (1980). B36, 2790-2793

Bis μ-(benzoato- O, O^{\prime})]-bis(benzoato)-bis μ-(2-dibutylaminoethanolato)]bis(ethanol)tricopper(II)

By Heikki Muhonen, Aarne Pajunen and Reijo Hämäläinen
Department of Inorganic Chemistry, University of Helsinki, SF-00100 Helsinki 10, Finland

(Received 21 February 1980; accepted 28 July 1980)

Abstract

Cu}_{3}\left(\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)_{2}\right|\), monoclinic, $P 2_{1} / c, a=8.210(9), b=29.77(5), c=$ 12.71 (1) $\AA, \beta=113.90(5)^{\circ}, V=2839$ (6) $\AA^{3}, Z=2$, $D_{m}=1 \cdot 30$ (the same as that of 1,2-dichlorobenzene by flotation), $D_{c}=1.30 \mathrm{Mg} \mathrm{m}^{3}, \mu\left(\right.$ Mo $K(r)=1.22 \mathrm{~mm}^{-1}$. The structure was solved from single-crystal diffractometer data. Three Cu atoms form a linear array with distances of $3 \cdot 211$ (6) \AA. Aminoalcohol ligands and two of the four benzoato ligands form bridges between the Cu atoms. As a bridging group the benzoato ligand is bidentately coordinated through O atoms to different Cu atoms and shows a syn-syn configuration. The other two benzoato ligands are unidentately coordinated to the terminal Cu atoms. The coordination geometries are octahedral and square planar on the central and terminal Cu atoms, respectively, the ethanol O atoms occupying the axial coordination positions of the central Cu atom. The least-squares refinement led to a final R of 0.067 . C atoms of the butyl chains and of ethanol, which have high thermal motions, could not be located satisfactorily.

Introduction. Only a few crystal structures of linear trinuclear oxygen-bridged $\mathrm{Cu}^{\text {II }}$ complexes have been described. The known $\mathrm{Cu}^{\mathrm{II}}$ complexes of 2-dibutylaminoethanol are dimeric or tetrameric (Mergehenn \& Haase, 1975, 1977; Mergehenn, Haase \& Allmann, 1975). 1,3-Diamino-2-propanol, which contains three possible donor atoms, forms, in addition to mononuclear complexes (Pajunen \& Kivekäs, 1974; Smolander, 1974; Bockelmann, Uggla, Orama \& Böök, 1975;

Kivekäs, 1977), trinuclear complexes of two types (Bertrand, Marabella \& Vanderveer, 1977; Kivekäs \& Pajunen, 1977; Kivekäs, Pajunen \& Smolander, 1977; Pajunen \& Kivekäs, 1979; Näsäkkälä, 1977a; Kivekäs, 1978). However, the arrangement of the three Cu atoms in both types is triangular. Another aminoalcohol, 3 -(N, N-diethylethylenediamine)-1-propanol |previously called N, N-diethyl- N^{\prime}-(3-hydroxypropyl)ethylenediaminel, which also contains three possible donor atoms, forms both di- and trinuclear $\mathrm{Cu}^{\mathrm{II}}$ complexes (Villa, Coghi, Manfredotti \& Guastini, 1974; Matsumoto, Nishida, Kida \& Ueda, 1976). The resulting trinuclear complex is linear. Among the iminoalcohols the condensation product of 3 -amino-1-propanol with 2,4 -pentanedione is capable of forming a linear trinuclear Cu^{11} complex acting as a quadridentate ligand (Baker \& Helm, 1975). In this paper we describe the crystal structure determination of a linear trinuclear complex formed between $\mathrm{Cu}^{\text {II }}$ benzoate and 2-dibutylaminoethanol.

Blue needle-shaped crystals of the title compound were precipitated from an ethanol solution of 2 dibutylaminoethanol and $\mathrm{Cu}^{\mathrm{II}}$ benzoate (molar ratio 2:1). Systematic absences from Weissenberg photographs ($\mathrm{Cu} K \mathrm{~K}$ radiation) showed the space group to be $P 2_{1} / c$. The intensity data were collected on a Syntex $P 2_{1}$ diffractometer. Calculation of the orientation matrix and refinement of cell parameters were carried out by the least-squares method from 9 automatically centred and indexed reflections. With the ω-scan technique, a variable scan rate from 3.0 to $30.0^{\circ} \mathrm{min}^{-1}$ and graphite-monochromated Mo $K a$ radiation ($\lambda=$

[^0]: * Permanent address: Département de Physique, Faculté des Sciences de Tunis, Campus Belvedère, Tunis, Tunisia.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35460 (17 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

